EGC442
Class Notes
4/12/2023

Baback 1zadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Test 2:

® Chapter 4
e ALU design

® Chapter 5

® Design of data path and

control

° Pipelined processor

* Correcting for various

hazards

* Advanced pipeline

concepts

1} Two actions must be completed before a beg's branch can be taken,

actions that take time. Obviously, one is to determine whether the
beg's two source registers values are equal. The other is to compute

@® the beg's target address
(O the beq instruction's source registers’ addresses

Q the beq instruction's address

| The action of computing the beg's target address can be done earlier,

inthe ID stage rather than the EX stage. That action means the target
address will be computed for all instructions, not just beg
instructions. A problem that may occur with such computing for all
instructionsis ____

QO branching to a wrong target address
QO longer flushing.

@® (no problem exists)

| For beq, determining if the two source registers’ values are equal is

done in an earlier stage than EX using ____.
@® XOR gates
Q the existing ALU
O asecond ALU

Correct

If the beg instruction is at address 40, and the beq's third
operand is 28, then the target address is computed as 40
+ 4+ 28. That computation takes time.

Correct

Computing the address for all instructions poses no
problem; the computed address (even if wrong or non-
sensical) is simply ignored for non-branch instructions.

Correct

Equality is efficiently computed using simple XOR gates,
which are much simpler than a full ALU.

32 sub $10, $4, $8
6 sw $2,2(58)

40) beq $2, $4,3

29 and $12, $2, $5
48 or $13,$2,%6
52 add $14, %4, $2
56 , $6, $7

IFID

it

4) Assume the following sequence
of instructions

32 sub $10, $4, $8

36 sw $2,2($8)
40 beq $2, $4,3 /
(%4 and $12, 52, 55

48 or $13,9$2, %6
52 add $14, $4, $2
~> 56 (slt_$1
&\ - Using the following diagram
assuming ($2)= x37 §$4)=
ow the next three Cycling steps:
- Repeat a for ($2)=0x37 ($4)= OX7

—

—7

l'#l.":-

SwJ

il

u
Fowarding |
| umit

4) Assume the following sequence

of instructions

32 sub $10, $4, $8 ,/

36 sw $2,2(S8) mdS1252.85 | bea$2843 | seS2288) \)\D
40 beq $2$43- : Z

44 Jand $12, $2, $5
or $13,8%2, $6

52 add $14, $4, $2

-
..........

1
L3R]

1
[I |

QD

/]

1-Bit Predictor: Shortcoming

= |nner loop branches mispredicted twice! gof(L = Q} L <RI, C”’) 3
outer: .. <
. 7
inner: .. : S

beq .., .., outer

= Mispredict as taken on last iteration of
Inner loop

= Then mispredict as not taken on first
iteration of inner loop next time around

AW

=V A \‘/'8 '\'VW\.I\
bvanch 1 “akan

dll Be- [branch, |
el -
\ | i » >]
tD i — @ D, @) ‘E \
(A}
\) St 1)

ol

2-Bit Predictor

®» [{ the branch 1s taken, we have a penalty of one cycle
® For our sitmple design, this 1s reasonable

» With deeper pipelines, penalty increases and static
branch prediction drastically hurts performance

®» Solution: Use 2-bit branch prediction

Not taken

Predict taken

Taken

Only change prediction on two
successive mispredictions Nonaken\ {Taken

N

Not taken

Predict not taken

Taken

More-Realistic Branch Prediction

» Static branch prediction
»Based on typical branch behavior
»Example: loop and if-statement branches
» Predict backward branches taken
» Predict forward branches not taken
= Dynamic branch prediction
»Hardware measures actual branch behavior
®»e.g., record recent history of each branch
» Assume future behavior will continue the trend

»\\/hen wrong, stall while re-fetching, and update
history

Branch Prediction

= |n deeper and superscalar pipelines, branch
penalty is more significant

» |Jse behavioral branch prediction

»Branch prediction buffer (aka branch history
table)

» |ndexed by recent branch instruction addresses
» Stores outcome (taken/not taken)

®»T0o execute a branch
» Check table, expect the same outcome
» Start fetching from fall-through or target
®»|f wrong, flush pipeline and flip prediction

